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LIST OF SYMBOLS 

r, 6 Polar coordinates as defined in Figure 1 (mm, rad) 

x, y Cartesian coordinates as defined in Figure 1 (mm) 

a.. Stress Components i, j = 1, 2  (KPa) 

e.. Strain Components i, j = 1, 2  (mm/mm) 

yi 

AP 

Displacement Components  i = 1, 2 (mm) 

T       Maximum in plane shearing stress (KPa) 
max 

1/2 
K       Mode I Stress Intensity Factor (KPa-m  ) 

1/2 
K       Apparent Mode I Stress Intensity Factor (KPa-m  ) 

KA_ = T  (8TTr)1/2 AP   maxv 

1/2 
K,^      Estimated Kj by TSCM  (KPa-m  ) 

s       Length along curved path  (mm) 

2 
g       Mode I strain energy release rate  (J/m ) 

E       Modulus of Elasticity   (GPa) 

v       Poisson's Ratio 
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Introduction 

The idea of obtaining stress intensity factors (SIF) from photoelastic 

results was suggested by G. R. Irwin [1] in the early 1950's.  Since that 

time, a number of investigators have contributed to efforts to obtain SIF 

values from photoelastic data. The early work of Post and Wells and Post 

[2], [3] studies by Fessler and Mansell [4], by Marloff et al [5], by 

Liebowitz, Vanderveldt, and Sanford [6], by Kobayashi and his associates [7], 

[8], [9] and recently by the senior author and his associates [10]-[25] has 

led to both a clarification and means for overcoming difficulties associated 

with application of the method.  The most important current difficulties 

appear to be: 

i) Accuracy with which the SIF may be extracted from photoelastic data. 

ii) A means for constructing "artificial" cracks of known geometry and 

their susceptibility to finite deformation effects in stress freezing. 

iii) The influence upon local constraint of the high Poisson's Ratio 

(v - 0.5) encountered in stress freezing work. 

Over a period of five years, the senior author and his associates have 

evolved a technique for extracting the stress intensity factor directly from 

photoelastic data, without resorting to stress separation methods.  This 

approach met with success in dealing with three dimensional Mode I problems. 

The technique employs a representation of the maximum in-plane shearing 

stress as a singular term plus a Taylor series to account for effects of 

the regular stress field in the data zone. Referred to as a Taylor Series 

Correction Method (TSCM), it is described elsewhere [16], [17], [19], [20] 

and is believed to be useful in overcoming the difficulty noted in Item i). 

An extensive photoelastic investigation of crack-like notches was 

conducted by Dixon and Strannigan [26] some years ago. However, the thrust 



of this work was not directed towards direct SIF determination. Recently, 

Gross and Mendelson [27] found analytically that vee notches of 30° or 

less would simulate notch tip stress fields which lead to agreement to 

within 2% of SIF values for natural cracks. This led the senior author 

to examine various vee notch angles photoelastically for compact tension 

specimens [18]. His results confirmed the findings of Gross and Mendelson 

but the confirmation was done primarily at room temperature. 

The writers have had occasion to employ "artificial" cracks in several 

instances in order to achieve uniform and repeatable crack geometries. 

In so doing, they have found two types of notches convenient to use: 

a) A 0.152 mm wide rectangular tipped slot 

b) 1.59 mm wide slots terminating in a vee notch of approximately 0.025 

mm root radius. A primary goal of this study is to assess how well these 

notches simulate natural cracks in stress freezing work. 

When one conducts stress freezing experiments, care must be taken to 

avoid gross field finite deformations. Moreover, for a cracked plate of 

finite thickness, a state of nearly plane strain exists near the crack tip. 

However, remote from the crack tip the states of stress and deformation are 

well characterized by generalized plane stress.  Since a zone of transition 

must lie between these extremes, the problem becomes three dimensional and 

thus dependent upon Poisson's Ratio. Since all stress freezing materials 

exhibit a value of Poisson's Ratio of - 0.5, and since v - 0.3 for most 

structural materials, the influence of the "artificially" elevated value of 

Poisson's Ratio needs to be examined. A secondary goal of this paper is 

to examine this effect. 

Analytical Considerations 

Although these topics are treated elsewhere in the open literature, a 

brief discussion of concepts applied to the present study is included here 



for convenience. 

The TSCM [16] [17H19] [20] - As is well known, the elastic stress field 

surrounding the crack tip can be expressed, for the Mode I case as: 

with the notation given in Figure 1. By substituting Equation 1 into 

Equation 2 

T   = 1/2 
max (a -a ) + 4T * 

x  y'     xy 
1/2 (2) 

one obtains 

T = f(r, 0, K_) (3) 
max   v '  '  I 

and since, for Mode I loadings, the fringe loops tend to spread in a 

direction approximately normal to the crack surfaces (Figure 2), we may 

evaluate T   along 6 = ir/2, yielding 
max 

K 
w= ^F1 (4) 

Moreover, since the stress-optic law prescribes 

_ ,nf . 
Tmax  2t t3> 

a relationship of the fringe order to K is established.  In obtaining data 

along G = IT/2 some of the points may be far enough away from the crack tip 

to be influenced by the regular stress field.  In order account for this, 

we use a Taylor series to represent the regular part of the stress field. 

Thus, 

K_       M     ,- 
T   = VTT + £ K (6) 
maX  (8ur)1/2   N=0 N 

becomes the equation to which values of K are fitted by a least squares 

process in TSCM. This result corresponds to the Williams Stress Function 



for two dimensional problems and reduces to the Irwin two parameter method. 

to within truncation error for a three term expression for T 
max 

Poisson's Ratio Effect [28][29][30] 

The experimentally determined SIF for a plate containing a 

through crack is known [28][29] to yield a higher result than the corres- 

ponding two dimensional solution. This difference in SIF values is due to 

the fact that a constraint develops near the crack tip in the experiment 

since the plate thickness is much greater than the crack root radius and 

a state of nearly plane strain results local to the crack tip. At dis- 

tances which are substantially larger than the thickness from the crack 

tip, a state of nearly generalized plane stress will result. As noted 

earlier, a zone of transition will exist between these extremes, resulting 

in a three dimensional problem. Brown and Srawley [29], and Irwin [30], 

have pointed out that the two dimensional result can be converted to the 

2 - 1/2 three dimensional SIF by multiplying the SIF by (1 - v )    . A rationale 

for this conversion can be constructed as follows: 

Consider the Mode I traction loaded cracked plate of Figure 3. Rice 

[31] has identified an integral: 

J = / [Udy - o± -g| ds ] (7) 

where U = f  a..de.., the strain energy density, 

u. = displacement components 

a.   = stress vector components 

which is independent of path for two dimensional problems. Moreover, if 

the strain energy density is a quadratic function of the strains, the J 

integral is identical to the strain energy release rate g. 



If we compute J for Path A, which is located at distances substantially 

larger than the plate thickness from the crack tip, the result will be 

approximately the strain energy release rate for plane stress as computed 

by Paris and Sih [32].  Thus 

K 2 

IA 

On the other hand, locating the path B within the constrained region, 

we would expect our result to be approximately the plane strain g value, or 

(1 - V2)K 2 

JI - *! i-^ (9) 

2 - 1/2 For J_ to be path independent, it follows that KT1J = (1 - v )      KTA. I iB IA 

In real plate problems the thickness is finite, and the preceding 

conversion becomes a maximum conversion factor. If the thickness is large 

relative to the lateral dimensions of the body, no conversion would be 

required.  It is only where the thickness is substantially less than the 

lateral dimensions of the body that the two dimensional solution will 

agree with the plane stress result. 

Alternatively, if we multiply the SIF measured photoelastically at 

1/2 
the crack tip by (1 - v)   , we get the SIF which corresponds to the two 

dimensional solution for a thin plate.  In stress freezing work, v = 0.5 

and if we wish to obtain the test result which would correspond to 

Poisson's ratio - 0.3, we can convert the two dimensional result back to 

the test result form using the inverse of the above conversion.  Our 

complete conversion factor is then: 

t1 - <°-5>2l 1/2  - 0.91 
[1 - C0.3)2] 1/2 

for correcting the "plane strain" test result for the fact that Poisson's 

Ratio was different for the test material than for the prototype structural 

material.  This effect is further verified in [33]. 

5 



The Experiments 

A series of stress freezing photoelastic experiments were designed 

using an edge cracked strip as the test model.  This model was selected 

because, due to bending effects and lack of gross constraint, it was 

very sensitive to small load changes and also because accurate analytical 

solutions such as that of reference [34] were available. The basic specimen 

geometry and loading is pictured in Figure 4 together with the three types 

of cracks studied. Beginning with stress free strips of PSM-8 (Photolastic, Inc.) 

natural cracks were tapped into the plate edge, while the "artificial" 

cracks were inserted with circular saws.  Specimens were then placed in 

the stress freezing oven in a string loaded tensile load rig as indicated 

in Figure 4. After heating to critical temperature and soaking to achieve 

uniform temperature, loads were applied and the specimens were cooled 

under load. Two load levels were employed. One load level corresponded 

essentially to about 80% of the threshold value for slow crack growth of 

the natural crack, and, twice this load was also used for the artificial 

cracks.  For natural cracks, half of this load or 40% of the threshold 

value was also employed. A summary of the tests run together with average 

data values are found in the upper part of Table I. 

The frozen slices were then coated with an oil of the same index of 

refraction as the model material and inserted into the field of Photolastic 

Model 051 Slice Analyzer for fringe order determination along a line normal 

to the crack surfaces and passing through the crack tip. 

In addition to the stress freezing tests, tests were conducted on 

Vee-notched and naturally cracked specimens at room temperature at which 

the material's Poisson's Ratio was 0.36. 



Results and Discussion 

A set of test data from one of theV-H tests (Table I) are plotted 

in Figure 5 which may be regarded as typical for all tests.  This plot of 

1/2        1/2 
normalized apparent SIF, K /a(ira)    vs (r/a)    is used to interpret Ap 

the data and to extrapolate the portion of the data in the appropriate 

zone to obtain the SIF.  In his discussion [1] Irwin pointed out that at 

least two parameters were necessary to obtain the SIF in a two dimensional 

problem.  This leads to an equation for x   which corresponds to Equation 
max 

6 with M = 0. Moreover, it implies that a plot of the data such as given 

by Figure 5 should yield a straight line in the zone dominated by the 

singular stresses.  Thus, in the present study, M was set equal to zero in 

the computer program and only the data in Zone II of Figure 5 were used 

in obtaining K^^. 

In Zone I, effects of the regular stress field are significant; and 

in Zone III, recent studies [25] indicate that the stress relaxation here 

is due to material non-linearity near the crack or notch tip.  Zone II 

occurred in the same r/a range for all crack geometries. 

From a study of the average values of 
*T SCM 

LKTh 

in Table I, it is con- 

cluded that all experimental results were higher than predicted by the two 

dimensional theory with the rectangular cracks exhibiting SIF values of 

over 20% above analytical results.  The vee notches and the natural cracks 

yielded essentially the same results which averaged 12% above the two 

dimensional solution.  Since the SIF reproducibility of the "artificial" 

cracks was to within +2.5% and for the natural cracks + 4%, the above 

results clearly represent a definite data trend. 



Upon applying the conversion factor of 0.91 noted earlier to the 

test results, the natural and vee-notch cracks agree with the two dimen- 

sional solution to within + 3% for the stress freezing tests and within 

1% for the room temperature tests. The rectangular slots, however, still 

average 10% above the two dimensional solution. 

The rectangular slot was studied by Schroedl and Smith [24]. Using 

their computer program for Savin's solution, the authors constructed 

Figure 6. From this graph it is clear that, if data in the (r/a)1^2 

range of 0.2 to 0.4 are linearly extrapolated to the origin for the 

rectangular slot, (b/a = 0.006) a normalized SIF results which is about 

6% greater than for the line crack. The balance of the difference 

(Table I) is attributed to finite deformation effects at the higher load. 

By comparing Figures 5 and 6, it is clear that the singularity intro- 

duced by the presence of the square corner in Figure 6 is absent from 

Figure 5.  This is believed to be due to the fact that material non- 

linearities develop in the zone of high K /K  values. However, in any 

case, one can still obtain valid values of the SIF with rectangular slots 

1/2 
at lower loads by taking data outside of (r/a) '  - 0.3 to 0.4 provided 

the data are linear there. 

The rather significant Poisson's Ratio effect noted here in stress 

freezing work on two dimensional problems naturally raises the question as to 

the extent of this effect in three dimensional problems where generalized 

plane stress does not exist away from the crack tip.  By studying existing 

approximate solutions to such problems such as [35] one can conjecture that the 

effect will generally be less than the usual experimental error of 5%. More 

exact information, however, will require further study. 

It is noted that only one plate thickness was studied here and the authors 

hope to extend their results to other thicknesses in future work. 



Summary and Conclusions 

A stress freezing photoelastic study was carried out on a series of 

edge cracked strips containing three types of cracks.  It was concluded 

that: 

i) 1.59 mm wide slots terminating in a 30° vee notch of approximately 

0.025 mm root radius yield essentially the same SIF values as natural cracks. 

ii) Test results can be replicated to within + 4%. 

iii) The effect of Poisson's Ratio in a stress freezing plate test 

is significant and should be accounted for when comparing results with two 

dimensional solutions. An approximate means for doing this is described. 

iv) Rectangular slots 0.152 mm wide tend to give SIF values which are 

some 10 percent higher than vee notch or natural crack results. This effect 

can be alleviated by utilizing data further from the crack tip provided 

the data are still linear in Fig. 5 and by keeping loads quite small. 

The present studies were quite restrictive in terms of both test and 

crack geometries. However, it is hoped that useful quantitative information 

on photoelastic stress intensity determination has resulted.  Studies directed 

to improve the accuracy of the method are continuing. 
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Figure 2. Spreading of Fringes Normal to Crack Plane (Mode I) 
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Figure 3. Generalized Plate Specimen 
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